
Semi-Automated Viewpoint-based Reconstruction
and Analysis of Microservice Architecture

AK Microservices and DevOps 2023, Cologne, Germany

Philip Wizenty

philip.wizenty@fh-dortmund.de
15 Sep 2023

University of Applied Sciences and Arts Dortmund,
IDiAL Institute

mailto:philip.wizenty@fh-dortmund.de


Inhaltsverzeichnis

Motivation

Background

LEMMA-Enabled Approach for MSA Reconstruction

Validation

Model-driven Security Smell Resolution

Proof of Concept Implementation

Conclusion

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 1



Table of Content

Motivation

Background

LEMMA-Enabled Approach for MSA Reconstruction

Validation

Model-driven Security Smell Resolution

Proof of Concept Implementation

Conclusion

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 2



Motivation

• MSA promotes to increase service independence by
• letting it realize a distinct, self-contained capability
• decreasing its coupling to other software components w.r.t., e.g., implementation,

testing, and operation
• transferring its ownership to a dedicated team, being responsible for all aspects

related to service design, implementation, and operation
• add modifiability

• Improved maintainability by facilitating the replacement of services with improved
versions

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 3



Motivation

• MSA promotes to increase service independence by
• letting it realize a distinct, self-contained capability
• decreasing its coupling to other software components w.r.t., e.g., implementation,

testing, and operation
• transferring its ownership to a dedicated team, being responsible for all aspects

related to service design, implementation, and operation
• add modifiability

• Improved maintainability by facilitating the replacement of services with improved
versions

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 3



Motivation

• MSA promotes to increase service independence by
• letting it realize a distinct, self-contained capability
• decreasing its coupling to other software components w.r.t., e.g., implementation,

testing, and operation
• transferring its ownership to a dedicated team, being responsible for all aspects

related to service design, implementation, and operation
• add modifiability

• Improved maintainability by facilitating the replacement of services with improved
versions

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 3



Motivation

 Problem Statement

• Increased modifiability facilitates service evolution

• Increased independence enables teams to autonomously adapt different parts of
the software system

⇒ Increased risk for the erosion of the anticipated architecture design

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 4



Motivation

 Solution Proposal

• Software Architecture Reconstruction (SAR) [1] to (semi-) automatically recover a
microservice architecture’s design

• Model-based SAR to recover architecture information from different viewpoints

• The viewpoints addressing concerns of different type of stakeholders in the
software engineering process

• Models to facilitate the engineering process of the MSA-based software system

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 5



Table of Content

Motivation

Background

LEMMA-Enabled Approach for MSA Reconstruction

Validation

Model-driven Security Smell Resolution

Proof of Concept Implementation

Conclusion

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 6



Viewpoint-based MSA Modeling with LEMMA

• Model-driven Engineering (MDE) [2] is an approach to software engineering that
aims to facilitate the design, implementation, and operation of a software system
though the use of models

• A model [2] in sense of MDE is an artifact that:
• Abstracts from selected characteristics of the considered software system
• Is expressed in a dedicated modeling language
• Is (semi-) automatically processible for specific purposes in the software engineering

process

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 7



Viewpoint-based MSA Modeling with LEMMA

• Model-driven Engineering (MDE) [2] is an approach to software engineering that
aims to facilitate the design, implementation, and operation of a software system
though the use of models

• A model [2] in sense of MDE is an artifact that:
• Abstracts from selected characteristics of the considered software system
• Is expressed in a dedicated modeling language
• Is (semi-) automatically processible for specific purposes in the software engineering

process

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 7



Viewpoint-based MSA Modeling with LEMMA

• Model-based viewpoints [4, 3] provide means to reduce the software system’s
complexity by describing only a specific part of the system

• View models are specifically effective in making the parts and underlying
concepts of complex software architectures explicit to facilitate the reasoning
about them [8]

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 8



Viewpoint-based MSA Modeling with LEMMA

• Model-based viewpoints [4, 3] provide means to reduce the software system’s
complexity by describing only a specific part of the system

• View models are specifically effective in making the parts and underlying
concepts of complex software architectures explicit to facilitate the reasoning
about them [8]

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 8



Viewpoint-based MSA Modeling with LEMMA

• LEMMA1 is an MDE-based ecosystem that focuses on the concerns of different
stakeholder groups in MSA engineering

• LEMMA enables the construction of models for. . .
. . . domain-driven service design (Domain Data Modeling Language)
. . . API management (Service Modeling Language)
. . . service operation (Operation Modeling Language)

1https://fh.do/lemma
Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 9

https://fh.do/lemma


Viewpoint-based MSA Modeling with LEMMA

• LEMMA1 is an MDE-based ecosystem that focuses on the concerns of different
stakeholder groups in MSA engineering

• LEMMA enables the construction of models for. . .
. . . domain-driven service design (Domain Data Modeling Language)
. . . API management (Service Modeling Language)
. . . service operation (Operation Modeling Language)

1https://fh.do/lemma
Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 9

https://fh.do/lemma


Viewpoint-based MSA Modeling with LEMMA

• Domain Data Modeling Language (DDML)

• Focuses on concerns of domain experts and microservice developer

• Provides linguistic support for Domain-driven Design (DDD)

Listing 1: Excerpt from LEMMA’s Domain Data Model.
1 context customerManagementBackend {
2 structure InteractionEntity<entity> {
3 string id<identifier>,
4 date createDate,
5 string content,
6 boolean sentByOperator
7 }
8 }

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 10



Viewpoint-based MSA Modeling with LEMMA

• Service Modeling Language (SML)

• Developers can use the SML to model microservice APIs and endpoints.

Listing 2: Excerpt from LEMMA’s Service Model.
1 public functional microservice
2 com.lakesidemutual.customerManagementBackend.CustomerManagementBackend {
3 required microservices { coreServices::com.lakesidemutual.CustomerCore }
4 interface customerCoreClient {
5 getCustomers(
6 sync filter? : string,
7 sync limit? : int,
8 sync customerId? : int
9 ...

10 );
11 ...
12 }

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 11



Viewpoint-based MSA Modeling with LEMMA

• Operation Modeling Language (SML)

• The OML defines modeling concepts for microservice operators to express
microservices’ deployment and use of operation infrastructure.

Listing 3: Excerpt from LEMMA’s Operation Model.
1 @technology(container_base)
2 @technology(protocol)
3 container CustomerManagementContainer
4 deployment technology container_base::_deployment.Kubernetes
5 deploys customerManagementServices
6 ::com.lakesidemutual.customerManagementBackend.CustomerManagementBackend
7 depends on nodes eureka::ServiceDiscovery {
8 eurekaUri = "http://localhost:8761"
9 basic endpoints { protocol::_protocols.rest: "http://localhost:8100"; }

10 }}

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 12



Table of Content

Motivation

Background

LEMMA-Enabled Approach for MSA Reconstruction

Validation

Model-driven Security Smell Resolution

Proof of Concept Implementation

Conclusion

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 13



LEMMA-Enabled Approach for MSA Reconstruction

• (a) LEMMA-Enabled Microservice Architecture Reconstruction (MAR) Framework
• Orchestrates the stages of the SAR process
• Provides functionalities for reconstructing viewpoint-specific information
• Manages MAR plugins

• (b) MAR Plugins
• Derive viewpoint-specific architecture information from source code artifacts

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 14



LEMMA-Enabled Approach for MSA Reconstruction

• (a) LEMMA-Enabled Microservice Architecture Reconstruction (MAR) Framework
• Orchestrates the stages of the SAR process
• Provides functionalities for reconstructing viewpoint-specific information
• Manages MAR plugins

• (b) MAR Plugins
• Derive viewpoint-specific architecture information from source code artifacts

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 14



LEMMA-Enabled Approach for MSA Reconstruction

Viewpoint-specif ic ModelsStatic Source Code Artifacts

LEMMA Model
Extractortor

   Reconstruction
   Database

MAR Plugin
Service
(Java)

MAR Plugin
Data

(Java)

Operation Viewpoint
Concepts

Service Viewpoint
Concepts

Domain Viewpoint
Concepts

MAR Framework

                         creates

uses

«artifact»
Service
Model

                stores

uses

«artifact»
Source Code

invokes invokesimplementsimplements

«artifact»
DomainData

Model

«artifact»
Operat ion

Model

«artifact»
Deployment

Specifications

bb

a

Figure 1: LEMMA-Enabled Approach for MSA Reconstruction.

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 15



LEMMA-Enabled Approach for MSA Reconstruction

Listing 4: Example Java source code artifact.
1 @Entity
2 @Table(name = "interactions")
3 public class InteractionEntity {
4 @Id
5 private String id;
6 private Date date;
7 private String content;
8 private boolean sentByOperator;
9 ...

10 }

Listing 5: Reconstructed LEMMA domain model.
1 context customerManagementBackend {
2 structure InteractionEntity<entity> {
3 string id<identifier>,
4 date createDate,
5 string content,
6 boolean sentByOperator,
7 ...
8 }
9 }

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 16



LEMMA-Enabled Approach for MSA Reconstruction - One Slide

Listing 6: Example Java source code artifact.
1 @RestController
2 @RequestMapping("/customers")
3 public class CustomerInformationHolder {
4 @GetMapping(value = "/{customerId}")
5 public ResponseEntity<CustomerDto> getCustomer(
6 @PathVariable CustomerId customerId) {...
7 return ResponseEntity.ok(customer);}}

Listing 7: Reconstructed LEMMA service model.
1 public functional microservice com.lakesidemutual.CustomerManagement {
2 interface CustomerInformationHolder {
3 getCustomers(
4 sync out customer : Customer::Customer.PaginatedCustomerResponseDto,
5 sync in filter : string, sync in integer : customerId);
6 ...}}

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 17



Table of Content

Motivation

Background

LEMMA-Enabled Approach for MSA Reconstruction

Validation

Model-driven Security Smell Resolution

Proof of Concept Implementation

Conclusion

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 18



Validation of LEMMA’s Reconstruction Framework

• Binary Classification [7] for the validation of the reconstruction results

• Classification of the reconstruction architecture information:
• True positive (TP): Correctly reconstructed
• True negative (TN): Not reconstructed
• False positive (FP) / False negative (FN): Wrongly reconstructed

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 19



Validation of LEMMA’s Reconstruction Framework

• Binary Classification [7] for the validation of the reconstruction results

• Classification of the reconstruction architecture information:
• True positive (TP): Correctly reconstructed
• True negative (TN): Not reconstructed
• False positive (FP) / False negative (FN): Wrongly reconstructed

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 19



Validation of LEMMA’s Reconstruction Framework

1. Recall [7]: Probability to identify a relevant element

Recall =
TP

TP + FN
(1)

2. Precision [7]: The correctness of the reconstructed elements

Precision =
TP

TP + FP
(2)

3. Fmeasure [7]: Accuracy of the entire reconstructed architectural design

F measure = 2 ∗ Recall ∗ Precision
Recall + Precision

(3)

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 20



Validation of LEMMA’s Reconstruction Framework

1. Recall [7]: Probability to identify a relevant element

Recall =
TP

TP + FN
(1)

2. Precision [7]: The correctness of the reconstructed elements

Precision =
TP

TP + FP
(2)

3. Fmeasure [7]: Accuracy of the entire reconstructed architectural design

F measure = 2 ∗ Recall ∗ Precision
Recall + Precision

(3)

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 20



Validation of LEMMA’s Reconstruction Framework

1. Recall [7]: Probability to identify a relevant element

Recall =
TP

TP + FN
(1)

2. Precision [7]: The correctness of the reconstructed elements

Precision =
TP

TP + FP
(2)

3. Fmeasure [7]: Accuracy of the entire reconstructed architectural design

F measure = 2 ∗ Recall ∗ Precision
Recall + Precision

(3)

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 20



Validation of LEMMA’s Reconstruction Framework

Figure 2: Intended architecture design of Lakeside Mutual2.

2https://github.com/Microservice-API-Patterns/LakesideMutual
Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 21

https://github.com/Microservice-API-Patterns/LakesideMutual


Validation of LEMMA’s Reconstruction Framework

Table 1: Results for the reconstruction of the architecture design of Lakeside Mutual3.
Java Domain Data Model Service Model

Element Expected TP FP FN Recall Precision Fmeasure

Microservices 5 4 0 1 80% 100% 88%
Interfaces 16 14 0 2 87% 100% 93%
Operations 61 50 3 8 86% 94% 90%

Data Structures 161 117 29 14 89% 80% 84%

Listing 8: External Spring dependency.
1 @GetMapping /* MAP: Retrieval Operation */
2 public ResponseEntity<List<InsuranceRequestDto>> getInsuranceQuoteRequests() {
3 ...
4 return ResponseEntity.ok(quoteRequestDtos);
5 }

Listing 9: External Spring dependency.
1 structure InsuranceQuoteResponseDto<valueObject> {
2 immutable string status<neverEmpty>,
3 immutable date expirationDate,
4 immutable MoneyAmountDto insurancePremium,
5 immutable MoneyAmountDto policyLimit
6 }

Listing 10: External Spring dependency.
1 getInsuranceQuoteRequests(
2 sync customerId : customerSelfServiceBackend::customerSelfService.CustomerId,
3 sync out result : customerSelfServiceBackend::customerSelfService.InsuranceQuoteRequestDtos
4 );

3https://github.com/SeelabFhdo/microservices2022
Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 22

https://github.com/SeelabFhdo/microservices2022


Table of Content

Motivation

Background

LEMMA-Enabled Approach for MSA Reconstruction

Validation

Model-driven Security Smell Resolution

Proof of Concept Implementation

Conclusion

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 23



Motivation

 Problem Statement

• Security Smells can negatively influence the software system’s security [6]

• Manual resolving security smells is costly, error-prone, and complex

 Security Smells decrease the software system’s overall quality and development
efficiency [5]

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 24



Motivation

 Solution Proposal

• Model-driven Engineering (MDE) [2] to detect Security Smells in MSA

• Refactor security smells via Model-to-Model Transformation

 Reduce complexity, errors, and costs of refactorings in MSA

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 25



Model-driven Security Smell Resolution

• Modeling

• Detecting

• Resolving

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 26



Modeling Microservice Security Aspects

Figure 3: Activities of modeling security aspects.

Select Microservice
Security Smell

Use Existing LEMMA
Technology Model

Create LEMMA
Technology Model

LEMMA Security
Smell Model

Extend LEMMA Model
With Architecture

Information

Extended LEMMA
Security Smell Model

M.4

M.3a

M.1

M.3b

Modeling Microservice Security Smells
Security Smell Model: TML model with integrated security smells

M.2

Derive Architecture
Relevant Information
From Security Smell

[Smell Exists In Model ]

[Model Lacks Smell ]

Listing 11: LEMMA security aspect technology
model.

1 technology SecurityAspects {
2 service aspects{
3 aspect usesApiGateway for microservices;
4 aspect Authorization for microservices {
5 string protocolName;
6 }
7 aspect Secured for interfaces, operations {
8 string role;
9 }

10 }
11 operation aspects {
12 aspect ApiGateway for infrastructure;
13 }
14 }

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 27



Detecting Microservice Security Smells

Extended LEMMA
Security Smell Model

Detecting Microservice Security Smells
Lemma Technology Models: LEMMA models with operation or service technologies
Security Smell Information: Detected security smells

Create LEMMA
Service Model

LEMMA Service
Model

Create LEMMA
Operation Model

LEMMA Technology
Models

LEMMA
Operation Model

Security Smell
Detection

Detected
Security Smells

D.3
D.2

D.1

Figure 4: Activities of detecting security smells.

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 28



Modeling Microservice Security Smells

Listing 12: LEMMA service model
CustomerCore.

1 import datatypes from "customerCore.data" as domain
2 import technology from "spring.technology" as spring
3
4 @technology(spring)
5 @spring::_aspects.ApplicationName("CustomerCore")
6 @spring::_aspects.Port(8080)
7 public functional microservice
8 com.lakeside.CustomerCore {
9 @endpoints(java::_protocols.rest: "/cities";)

10 interface cityStaticDataHolder {
11 @endpoints({spring::_protocols.rest: "/{id}";})
12 @spring::_aspects.GetMapping
13 getCitiesForPostalCode(
14 sync in postalCode : string,
15 sync out cities :
16 domain::customerCore.CitiesResponseDto);}
17 ...
18 }

Listing 13: LEMMA operation model
CustomerCore.

1 import microservices from "customerCore.services"
2 as customerCore
3 import technology from "deploymentBase.technology"
4 as deploymentBase
5 @technology(deploymentBase)
6 container CustomerCoreContainer
7 deployment technology
8 deploymentBase::_deployment.Docker
9 deploys customerCore::com.lakeside.CustomerCore

10 depends on nodes
11 infrastructure::ServiceDiscovery,
12 infrastructure::H2Database {
13 default values {
14 basic endpoints { protocolTechnology::
15 _protocols.rest: "http://localhost:8110"; }
16 }
17 ...
18 }

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 29



Resolving Microservice Security Smells

Detected Security
Smells

LEMMA
Operation Model

LEMMA Service
Model

Refactor
Operation Model

Refactor Service
Model

Select Security Smell 

Resolving Microservice Security Smells
LEMMA Models: LEMMA models containing API or deployment specifications
Detected Security Smells: List of Security Smells detected in LEMMA models

R.1a

R.1b

R.2 R.6R.4
R.5

Select Security Smell
Resolution Strategy

R.3

Mark Security Smells
As Intentionally

Ignored

Preview Selected
Refactoring

Results

Confirm
Refactored Model

Changes

Refactored LEMMA
Model

[Resolve Smell]

[Ignore
Smell]

Figure 5: Activities of resolving security smells.

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 30



Resolving Microservice Security Smells

Listing 14: Refactored CustomerCore operation
model.

1 ...
2 @technology(deploymentBase)
3 @technology(protocolTechnology)
4 container CustomerCoreContainer ...
5 depends on nodes
6 infrastructure::APIGateway,
7 infrastructure::ServiceDiscovery,
8 infrastructure::H2Database
9 ...}

Listing 15: Generated API Gateway operation
model.

1 import ...
2 @technology(Zuul)
3 APIGateway is Zuul::_infrastructure.Zuul
4 depends on nodes ServiceDiscovery
5 used by services
6 coreService::com.lakeside.CustomerCore,
7 used by nodes container::CustomerCoreContainer {
8 default values {
9 hostname = "APIGateway"

10 apiUri = "localhost:8080"
11 }
12 }
13 ...

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 31



Table of Content

Motivation

Background

LEMMA-Enabled Approach for MSA Reconstruction

Validation

Model-driven Security Smell Resolution

Proof of Concept Implementation

Conclusion

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 32



Proof of Concept Implementation

Figure 6: Detecting security smells in Eclipse.

Figure 7: Select refactoring strategy in Eclipse.

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 33



Proof of Concept Implementation

(a) Preview of the extension with an API Gateway of the
infrastructure operation model.

(b) Preview of the adaption of the Customer Core
operation model with API Gateway dependency.

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 34



Table of Content

Motivation

Background

LEMMA-Enabled Approach for MSA Reconstruction

Validation

Model-driven Security Smell Resolution

Proof of Concept Implementation

Conclusion

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 35



Conclusion

Summary:

• Model-driven resolution of security smells
• Insufficient access control
• Publicly accessible microservices

• Extensible approach due to LEMMAs expressiveness

Future Work:

• Software Architecture Reconstruction to construct models

• Code generator to refactor source code

• Extend analyze functionalities

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 36



Conclusion

Philip Wizenty, M.Sc.

• Ph.D. Student at IDiAL Institute

• Scientific Profile: ORCID , ResearchGate

• Contact: E-Mail , LinkedIn , XING , GitHub

Towards Resolving Security Smells in Microservices, Model-Driven

• Model microservice architecture

• Analyze models to identify security smells

• Rector model for resolving security smells

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 37

https://orcid.org/0000-0002-3588-5174
https://www.researchgate.net/profile/Philip_Wizenty
mailto: philip.wizenty@fh-dortmund.de
https://www.linkedin.com/in/philip-wizenty-071315152/
https://www.xing.com/profile/Philip_Wizenty
https://github.com/pwizenty


Questions

Questions?

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 38



Literatur

[1] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Addison-Wesley Professional, 2003.

[2] Benoit Combemale et al.
Engineering modeling languages: Turning domain knowledge into tools.
CRC Press, 2016.

[3] Robert France and Bernhard Rumpe. “Model-driven development of complex
software: A research roadmap.” In: Future of Software Engineering (FOSE’07).

IEEE. 2007, pp. 37–54.

39



Literatur

[4] ISO/IEC/IEEE.
Systems and software engineering — Architecture description. Standard

ISO/IEC/IEEE 42010:2011(E). 2011.

[5] Francisco Ponce et al. “Should Microservice Security Smells Stay or be
Refactored? Towards a Trade-off Analysis.” In: Software Architecture. Ed. by

Ilias Gerostathopoulos et al. Springer International Publishing, 2022, pp. 131–139.

[6] Francisco Ponce et al. “Smells and refactorings for microservices security: A
multivocal literature review.” In: Journal of Systems and Software 192 (2022),

p. 111393.

40



Literatur

[7] Robert Stahlbock. Advances in Data Science and Information Engineering.
Ed. by Gary M. WeissMahmoud Abou-NasrCheng-Ying YangHamid R. ArabniaLeonidas

Deligiannidis. Springer, Cham, 2021.

[8] Jon Whittle, John Hutchinson, and Mark Rouncefield. “The State of Practice in
Model-Driven Engineering.” In: IEEE Software 31.3 (May 2014). IEEE, pp. 79–85.

41


	Motivation
	Background
	LEMMA-Enabled Approach for MSA Reconstruction
	Validation
	Model-driven Security Smell Resolution
	Proof of Concept Implementation
	Conclusion
	Literatur
	References

