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Motivation

• MSA promotes to increase service independence by
• letting it realize a distinct, self-contained capability
• decreasing its coupling to other software components w.r.t., e.g., implementation,

testing, and operation
• transferring its ownership to a dedicated team, being responsible for all aspects

related to service design, implementation, and operation
• add modifiability

• Improved maintainability by facilitating the replacement of services with improved
versions
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Motivation

 Problem Statement

• Increased modifiability facilitates service evolution

• Increased independence enables teams to autonomously adapt different parts of
the software system

⇒ Increased risk for the erosion of the anticipated architecture design
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Motivation

 Solution Proposal

• Software Architecture Reconstruction (SAR) [1] to (semi-) automatically recover a
microservice architecture’s design

• Model-based SAR to recover architecture information from different viewpoints

• The viewpoints addressing concerns of different type of stakeholders in the
software engineering process

• Models to facilitate the engineering process of the MSA-based software system
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Viewpoint-based MSA Modeling with LEMMA

• Model-driven Engineering (MDE) [2] is an approach to software engineering that
aims to facilitate the design, implementation, and operation of a software system
though the use of models

• A model [2] in sense of MDE is an artifact that:
• Abstracts from selected characteristics of the considered software system
• Is expressed in a dedicated modeling language
• Is (semi-) automatically processible for specific purposes in the software engineering

process
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Viewpoint-based MSA Modeling with LEMMA

• Model-based viewpoints [4, 3] provide means to reduce the software system’s
complexity by describing only a specific part of the system

• View models are specifically effective in making the parts and underlying
concepts of complex software architectures explicit to facilitate the reasoning
about them [8]
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Viewpoint-based MSA Modeling with LEMMA

• LEMMA1 is an MDE-based ecosystem that focuses on the concerns of different
stakeholder groups in MSA engineering

• LEMMA enables the construction of models for. . .
. . . domain-driven service design (Domain Data Modeling Language)
. . . API management (Service Modeling Language)
. . . service operation (Operation Modeling Language)

1https://fh.do/lemma
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Viewpoint-based MSA Modeling with LEMMA

• Domain Data Modeling Language (DDML)

• Focuses on concerns of domain experts and microservice developer

• Provides linguistic support for Domain-driven Design (DDD)

Listing 1: Excerpt from LEMMA’s Domain Data Model.
1 context customerManagementBackend {
2 structure InteractionEntity<entity> {
3 string id<identifier>,
4 date createDate,
5 string content,
6 boolean sentByOperator
7 }
8 }
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Viewpoint-based MSA Modeling with LEMMA

• Service Modeling Language (SML)

• Developers can use the SML to model microservice APIs and endpoints.

Listing 2: Excerpt from LEMMA’s Service Model.
1 public functional microservice
2 com.lakesidemutual.customerManagementBackend.CustomerManagementBackend {
3 required microservices { coreServices::com.lakesidemutual.CustomerCore }
4 interface customerCoreClient {
5 getCustomers(
6 sync filter? : string,
7 sync limit? : int,
8 sync customerId? : int
9 ...

10 );
11 ...
12 }
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Viewpoint-based MSA Modeling with LEMMA

• Operation Modeling Language (SML)

• The OML defines modeling concepts for microservice operators to express
microservices’ deployment and use of operation infrastructure.

Listing 3: Excerpt from LEMMA’s Operation Model.
1 @technology(container_base)
2 @technology(protocol)
3 container CustomerManagementContainer
4 deployment technology container_base::_deployment.Kubernetes
5 deploys customerManagementServices
6 ::com.lakesidemutual.customerManagementBackend.CustomerManagementBackend
7 depends on nodes eureka::ServiceDiscovery {
8 eurekaUri = "http://localhost:8761"
9 basic endpoints { protocol::_protocols.rest: "http://localhost:8100"; }

10 }}
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LEMMA-Enabled Approach for MSA Reconstruction

• (a) LEMMA-Enabled Microservice Architecture Reconstruction (MAR) Framework
• Orchestrates the stages of the SAR process
• Provides functionalities for reconstructing viewpoint-specific information
• Manages MAR plugins

• (b) MAR Plugins
• Derive viewpoint-specific architecture information from source code artifacts
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LEMMA-Enabled Approach for MSA Reconstruction
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Figure 1: LEMMA-Enabled Approach for MSA Reconstruction.
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LEMMA-Enabled Approach for MSA Reconstruction

Listing 4: Example Java source code artifact.
1 @Entity
2 @Table(name = "interactions")
3 public class InteractionEntity {
4 @Id
5 private String id;
6 private Date date;
7 private String content;
8 private boolean sentByOperator;
9 ...

10 }

Listing 5: Reconstructed LEMMA domain model.
1 context customerManagementBackend {
2 structure InteractionEntity<entity> {
3 string id<identifier>,
4 date createDate,
5 string content,
6 boolean sentByOperator,
7 ...
8 }
9 }
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LEMMA-Enabled Approach for MSA Reconstruction - One Slide

Listing 6: Example Java source code artifact.
1 @RestController
2 @RequestMapping("/customers")
3 public class CustomerInformationHolder {
4 @GetMapping(value = "/{customerId}")
5 public ResponseEntity<CustomerDto> getCustomer(
6 @PathVariable CustomerId customerId) {...
7 return ResponseEntity.ok(customer);}}

Listing 7: Reconstructed LEMMA service model.
1 public functional microservice com.lakesidemutual.CustomerManagement {
2 interface CustomerInformationHolder {
3 getCustomers(
4 sync out customer : Customer::Customer.PaginatedCustomerResponseDto,
5 sync in filter : string, sync in integer : customerId);
6 ...}}
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Validation of LEMMA’s Reconstruction Framework

• Binary Classification [7] for the validation of the reconstruction results

• Classification of the reconstruction architecture information:
• True positive (TP): Correctly reconstructed
• True negative (TN): Not reconstructed
• False positive (FP) / False negative (FN): Wrongly reconstructed
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Validation of LEMMA’s Reconstruction Framework

1. Recall [7]: Probability to identify a relevant element

Recall =
TP

TP + FN
(1)

2. Precision [7]: The correctness of the reconstructed elements

Precision =
TP

TP + FP
(2)

3. Fmeasure [7]: Accuracy of the entire reconstructed architectural design

F measure = 2 ∗ Recall ∗ Precision
Recall + Precision

(3)
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Validation of LEMMA’s Reconstruction Framework

Figure 2: Intended architecture design of Lakeside Mutual2.

2https://github.com/Microservice-API-Patterns/LakesideMutual
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Validation of LEMMA’s Reconstruction Framework

Table 1: Results for the reconstruction of the architecture design of Lakeside Mutual3.
Java Domain Data Model Service Model

Element Expected TP FP FN Recall Precision Fmeasure

Microservices 5 4 0 1 80% 100% 88%
Interfaces 16 14 0 2 87% 100% 93%
Operations 61 50 3 8 86% 94% 90%

Data Structures 161 117 29 14 89% 80% 84%

Listing 8: External Spring dependency.
1 @GetMapping /* MAP: Retrieval Operation */
2 public ResponseEntity<List<InsuranceRequestDto>> getInsuranceQuoteRequests() {
3 ...
4 return ResponseEntity.ok(quoteRequestDtos);
5 }

Listing 9: External Spring dependency.
1 structure InsuranceQuoteResponseDto<valueObject> {
2 immutable string status<neverEmpty>,
3 immutable date expirationDate,
4 immutable MoneyAmountDto insurancePremium,
5 immutable MoneyAmountDto policyLimit
6 }

Listing 10: External Spring dependency.
1 getInsuranceQuoteRequests(
2 sync customerId : customerSelfServiceBackend::customerSelfService.CustomerId,
3 sync out result : customerSelfServiceBackend::customerSelfService.InsuranceQuoteRequestDtos
4 );

3https://github.com/SeelabFhdo/microservices2022
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Motivation

 Problem Statement

• Security Smells can negatively influence the software system’s security [6]

• Manual resolving security smells is costly, error-prone, and complex

 Security Smells decrease the software system’s overall quality and development
efficiency [5]

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 24



Motivation

 Solution Proposal

• Model-driven Engineering (MDE) [2] to detect Security Smells in MSA

• Refactor security smells via Model-to-Model Transformation

 Reduce complexity, errors, and costs of refactorings in MSA

Philip Wizenty Semi-Automated Viewpoint-based Reconstruction and Analysis of Microservice Architecture 25



Model-driven Security Smell Resolution

• Modeling

• Detecting

• Resolving
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Modeling Microservice Security Aspects

Figure 3: Activities of modeling security aspects.
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Listing 11: LEMMA security aspect technology
model.

1 technology SecurityAspects {
2 service aspects{
3 aspect usesApiGateway for microservices;
4 aspect Authorization for microservices {
5 string protocolName;
6 }
7 aspect Secured for interfaces, operations {
8 string role;
9 }

10 }
11 operation aspects {
12 aspect ApiGateway for infrastructure;
13 }
14 }
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Detecting Microservice Security Smells

Extended LEMMA
Security Smell Model

Detecting Microservice Security Smells
Lemma Technology Models: LEMMA models with operation or service technologies
Security Smell Information: Detected security smells

Create LEMMA
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LEMMA Service
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Create LEMMA
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D.3
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Figure 4: Activities of detecting security smells.
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Modeling Microservice Security Smells

Listing 12: LEMMA service model
CustomerCore.

1 import datatypes from "customerCore.data" as domain
2 import technology from "spring.technology" as spring
3
4 @technology(spring)
5 @spring::_aspects.ApplicationName("CustomerCore")
6 @spring::_aspects.Port(8080)
7 public functional microservice
8 com.lakeside.CustomerCore {
9 @endpoints(java::_protocols.rest: "/cities";)

10 interface cityStaticDataHolder {
11 @endpoints({spring::_protocols.rest: "/{id}";})
12 @spring::_aspects.GetMapping
13 getCitiesForPostalCode(
14 sync in postalCode : string,
15 sync out cities :
16 domain::customerCore.CitiesResponseDto);}
17 ...
18 }

Listing 13: LEMMA operation model
CustomerCore.

1 import microservices from "customerCore.services"
2 as customerCore
3 import technology from "deploymentBase.technology"
4 as deploymentBase
5 @technology(deploymentBase)
6 container CustomerCoreContainer
7 deployment technology
8 deploymentBase::_deployment.Docker
9 deploys customerCore::com.lakeside.CustomerCore

10 depends on nodes
11 infrastructure::ServiceDiscovery,
12 infrastructure::H2Database {
13 default values {
14 basic endpoints { protocolTechnology::
15 _protocols.rest: "http://localhost:8110"; }
16 }
17 ...
18 }
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Resolving Microservice Security Smells

Detected Security
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Figure 5: Activities of resolving security smells.
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Resolving Microservice Security Smells

Listing 14: Refactored CustomerCore operation
model.

1 ...
2 @technology(deploymentBase)
3 @technology(protocolTechnology)
4 container CustomerCoreContainer ...
5 depends on nodes
6 infrastructure::APIGateway,
7 infrastructure::ServiceDiscovery,
8 infrastructure::H2Database
9 ...}

Listing 15: Generated API Gateway operation
model.

1 import ...
2 @technology(Zuul)
3 APIGateway is Zuul::_infrastructure.Zuul
4 depends on nodes ServiceDiscovery
5 used by services
6 coreService::com.lakeside.CustomerCore,
7 used by nodes container::CustomerCoreContainer {
8 default values {
9 hostname = "APIGateway"

10 apiUri = "localhost:8080"
11 }
12 }
13 ...
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Proof of Concept Implementation

Figure 6: Detecting security smells in Eclipse.

Figure 7: Select refactoring strategy in Eclipse.
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Proof of Concept Implementation

(a) Preview of the extension with an API Gateway of the
infrastructure operation model.

(b) Preview of the adaption of the Customer Core
operation model with API Gateway dependency.
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Conclusion

Summary:

• Model-driven resolution of security smells
• Insufficient access control
• Publicly accessible microservices

• Extensible approach due to LEMMAs expressiveness

Future Work:

• Software Architecture Reconstruction to construct models

• Code generator to refactor source code

• Extend analyze functionalities
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Conclusion

Philip Wizenty, M.Sc.

• Ph.D. Student at IDiAL Institute
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Towards Resolving Security Smells in Microservices, Model-Driven

• Model microservice architecture

• Analyze models to identify security smells

• Rector model for resolving security smells
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Questions

Questions?
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