UH
ij‘l
(2 ¥ Universitit Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Detecting Usage of Deprecated Remote APIs

April 04,2024 Leif Bonorden — leif.bonorden@uni-hamburg.de

Key Motivation: Independent Deployability

Lock-step Deployment

Christian-Albrechts-Universitit zu Kisl

Provider Q Q Q Q
Consumer O O O O
Time
Independent Deployment
Provider Q ‘_,O =0 ---'Qu.. p
! - '.:—:-_::-_:‘_’-'- --- N, /7
—‘-'-§===—— g,
Consumer O~ d
—>
Time
AP| Evolution for Microservices H. Knoche, W, Hasselbring — Sep 13, 2022 2
Holger Knoche: API Evolution for Microservices. Detecting Usage of Deprecated Remote APIs

8. Treffen des AK MSDO, 2022.

Christian-Albrechts-Universitit zu Kisl

N
® r3
I"
04
’I
I"
f' L 4
~ \ R (
----------- r2 o »
N
r1
Internal Representation API Definition API Definition Internal Representation
History
Provider Consumer
AP| Evolution for Microservices H. Knoche, W, Hasselbring — Sep 13, 2022 9
Holger Knoche: API Evolution for Microservices. Detecting Usage of Deprecated Remote APIs

8. Treffen des AK MSDO, 2022.

Breaking Changes

changes in an APl that potentially break existing client code

—violation of backward compatibility

Examples Counter Examples (non-breaking)
= removing a method = adding a new method
= renaming an element = increasing an element’s visibility

Detecting Usage of Deprecated Remote APIs

Deprecation

ﬂ deprecated
the use of this element is discouraged

Typical reasons

= the element will be removed/changed (= breaking changes)
= a better alternative exists (e.g., faster)

= the element is not reliable (e.g., not thread-safe, non-deterministic)

Detecting Usage of Deprecated Remote APIs

Deprecation: Java APIs

boolean result = Character.isSpace('@');

isSpace('@")

\ 4

A

A

false

public static boolean isSpace(char ch) {..};

Detecting Usage of Deprecated Remote APIs

Deprecation: Java APIs

-1, The method is5pace(char) from the type Character is deprecated

boolean result = Character.isSpace('@');

A

isSpace('@") false

\ 4

@Deprecated
public static boolean isSpace(char ch) {..};

Detecting Usage of Deprecated Remote APIs

Deprecation: remote APIs

HttpClient cl = HttpClient.newBuilder().build();

HttpRequest req = HttpRequest.newBuilder().
uri("https://character.com/isSpace").build();

HttpResponse res = client.send(request, myBodyHandler);

POST /isSpace HTTP 1.1 HTTP/1.1 200 OK
Host: character.com Date: Thu, 04 Apr 2024
{ .. "character":"@", ..} { .. "result":false, ..}
AN p—
474 OPENAPI =]

Detecting Usage of Deprecated Remote APIs

. & The APl element
Deprecation: remote APlIs isSpace is deprecated.

HttpClient cl = HttpClient.newBuilder().build();

HttpRequest req = HttpRequest.newBuilder().
uri("https://character.com/isSpace").build();

HttpResponse res = client.send(request, myBodyHandler);

POST /isSpace HTTP 1.1 HTTP/1.1 200 OK
Host: character.com Deprecation: Tue, 31 Dec 2024
{ .. "character":"@", ..} { .. "result":false, ..}
A/OPENAPI deprecated: true

INITIATIVE

Detecting Usage of Deprecated Remote APIs

Approaches

3

Transfer Reuse Observation
re-implement what use PL-mechanisms inspect messages at
works for static APls for remote APIs runtime

Detecting Usage of Deprecated Remote APIs

10

Approach: @ Transfer

Java-> Java Java - remote API
1. Identify method call 15+ API Clients in Java
2. Check called method for deprecation How? OpenAPI-Spec?

3. Report findings Where? IDE? What if the

deprecation is added later?

Detecting Usage of Deprecated Remote APIs 1

Approach: @ Reuse

= Generate a Java library for the HTTP endpoint automatically.
= Call Character.isSpace although itis a remote API.

= Make isSpace deprecated (Java) if the corresponding remote element

is deprecated.

— Easy, but only works if generated API clients are used/possible.
What if the deprecation is added later?

Detecting Usage of Deprecated Remote APIs

12

Approach: Observation

At runtime:
1. React on outgoing API calls.
2. Check dynamically: Is the endpoint deprecated?

3. Report findings!

Detecting Usage of Deprecated Remote APIs

Detecting Usage of
Deprecated Web APIs
via Tracing

Bonorden & van Hoorn,
ICSA 2024

UH

iti
a3 Universitit Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Detecting Usage of Deprecated
Web APIs via Tracing

Leif Bonorden
Ulnfversirdr Hambirg
Hamburg, Germany

Leif bonorden @ uni-hamburg.de
ORCID: (000-0002-2131-7790

Abstract—Deprecation is a way o inform clients using an
application programming interface (APT) that the nsage of this
AP iis discouraged. Tool support and research for deprecation
in local APLs are well estublished. However, nowastays web APLs
are more commonly used, e, using the REST architectural
style. However, the technigues to detect and handle the usage of
deprecated local APIs cannot be directly applied to web APE.
Previous approaches for detecting deprecated web APLs focus on
static analysis of client code by durm-x calls to web APTs and,
an APL speci

André van Hoom
Ulniversiiir Hamburg
Hamburg, Germany
andre van hoom @uni-hambuarg de
ORCID: (000-0003-2567-6077

If elients wish to react 1o the deprecation of an AP they de-
pend on, they first need to be aware of the deprecation. While
comprehensive support exists for detecting the deprecation of
static APls (e.g., for Java libraries) the situation is different
for web APls (e.g., for REST calls) 8]

Previous approaches for the detection of calls w deprecated
weh APIs have utilized static analysis methods similar o
the case of static APls [9]. However, this has two essential
Timnitati (i) The rarget of an APl call can often not be

These currently hm ial ioms: (i) The
target of an API call can often not be determined statically.
{ii} Deprecation in A1 specifications i not the only way to signal
deprecation for web APls.

We introchuce a dynamic appreach using tracing lo_delect
calls 1o web APls. Subsequently, we check the called APIs for
deprecation using an API specilication, response metaedaty, or o
Knowledge hase. This approach sddresses buth limitations of the
detection with stalic analysis. We implement the approach and
evaluate it on three projecis, including clienterver calls as well
us u microservice system. The empirical
munpm-...m.r uum! n.e.—_.,u.rn!s n.mnmw
can be il i
tation provided by ()pldeemﬂn -muum« framewark.

determined statically. (i) Deprecation in API specifications is
nod the only way o signal deprecation for web APIs. Thus, we
introduce an approach o determine the usage of deprecated
weh APls dynamically. To the best of our knowledge, it is the
first such approach.

T overcome these limitations, we develop a new approach
comprising two essential steps: (i) The execution of a client
component is observed, and information abowt calls to web
The recorded data is analyzed and each
endpaoint is checked for deprecation. Cur approach considers
deprecation that s signaled directly in the call's response, in

Index Te ing interface,
dy namic analysis, tracing

L. INTRODUCTION

Software systems are typically not isolated units buat interact
with their surroundings [1]. Such communication with extemal
systems and their interfaces may be a business requincment,
this posing an faf) i of 4
voluntary decision during the -.ym.m "s design, thus inroducing
the dependency as an archirectural constraint for further devel-
opment [2], [3]. In addition to systems external not belonging
o the same organization, a similar setting is encountered
within a system if it comprises highly decoupled modules, e.g.,
with a microservice architecture [4] or bounded contexts [5].

As software systems evolve. they also peed to adapt their
interfaces to changed functionality. A common way to inform
cliems calling these interfaces that their use is no longer
encouraged is the deprecation of an entire APL, an element in
the APL, or a particular version of the APL Depending on the
further actions after a deprecation is introduced, it may lead 1o
technical debe with both AP clients [6] and APL providers [T).

This Is the accapted Versian of 3 fesearch paper at the 215t 1EEE

an daied APL specification, or in a knowledge base. We
implement the approach for HTTP APLs and OpenAPl speci-
fications. OpenAPl is a de-facto standard for the specification
of REST APl

This paper's main contribations ae:

« We present the first appecach to identify the usage of
deprecated web APl dynamically.

« We implement the approach for REST APIs, Open-
Telemetry data. and various forms of deprecation infor-
mation.

+ We evaluate the approach on multiple sample systems.

« We include a replication package with code, examples,
and the evaluation data [10].

These contributions benefit practitioners who use or offer
deprecated APls. Furthermore, the contributions benefit ne-
searchers who wish to study the deprecation of web APLs.

Section 1 introduces fundamentals, motivates our research,
and surveys related work. In Section IV, we introduce our
approach and present its implementation. Subsequently, we
evaluate the approach and its implementation in Section V
and discuss our results and their limitations in Section V1.
Finally, Section VII concludes the paper.

c an Somware {lesA 2024).

© 2024)EEE. Personal use m’rmmaremfrs emitted. Permission from IEEE must be obéained for aif other uses, In any curment of fulLre medVa,

of promaltional pUTpOSEs, Greating new colective warks, for fesale or registributicn fo

servers or Iists, or reuse of any mpyngmaeﬂ ‘COMpONENT of thi's Work In SEher Works.

Our Approach with OpenTelemetry

Clent | _ _ _ _ _ — API

Response ; D

API Specification

Observation
Telemetry Data
Deprecation
Detector
Collector D D

Spans/Traces Knowledge Base

Detecting Usage of Deprecated Remote APIs

Evaluation on Sample Projects

@

It works! ©

It works welll ©
= Precision 1.0

= Recall 0.95

@

= relies on instrumentation provided by

OpenTelemetry

= only applicable dynamically
(with typical disadvantages)

= only evaluated on simple sample projects

Detecting Usage of Deprecated Remote APIs

16

Outlook

this
approach

general
problem

evaluation in industrial settings

usage without telemetry data

combination with static approaches

improvements for API providers

Detecting Usage of Deprecated Remote APIs

17

Discussion

AN

The APl element

isSpace is deprecated.

Detecting Usage of Deprecated Remote APIs

18

	Folie 1: Detecting Usage of Deprecated Remote APIs
	Folie 2
	Folie 3
	Folie 4: Breaking Changes
	Folie 5: Deprecation
	Folie 6: Deprecation: Java APIs
	Folie 7: Deprecation: Java APIs
	Folie 8: Deprecation: remote APIs
	Folie 9: Deprecation: remote APIs
	Folie 10: Approaches
	Folie 11: Approach: Transfer
	Folie 12: Approach: Reuse
	Folie 13: Approach: Observation
	Folie 14: Detecting Usage of Deprecated Web APIs via Tracing Bonorden & van Hoorn, ICSA 2024
	Folie 15: Our Approach with OpenTelemetry
	Folie 16: Evaluation on Sample Projects
	Folie 17: Outlook
	Folie 18: Discussion

